首页> 外文OA文献 >CISRDCNN: Super-resolution of compressed images using deep convolutional neural networks
【2h】

CISRDCNN: Super-resolution of compressed images using deep convolutional neural networks

机译:CIsRDCNN:使用深度卷积的压缩图像的超分辨率   神经网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, much research has been conducted on image super-resolution(SR). To the best of our knowledge, however, few SR methods were concerned withcompressed images. The SR of compressed images is a challenging task due to thecomplicated compression artifacts, while many images suffer from them inpractice. The intuitive solution for this difficult task is to decouple it intotwo sequential but independent subproblems, i.e., compression artifactsreduction (CAR) and SR. Nevertheless, some useful details may be removed in CARstage, which is contrary to the goal of SR and makes the SR stage morechallenging. In this paper, an end-to-end trainable deep convolutional neuralnetwork is designed to perform SR on compressed images (CISRDCNN), whichreduces compression artifacts and improves image resolution jointly.Experiments on compressed images produced by JPEG (we take the JPEG as anexample in this paper) demonstrate that the proposed CISRDCNN yieldsstate-of-the-art SR performance on commonly used test images and imagesets. Theresults of CISRDCNN on real low quality web images are also very impressive,with obvious quality enhancement. Further, we explore the application of theproposed SR method in low bit-rate image coding, leading to betterrate-distortion performance than JPEG.
机译:近年来,关于图像超分辨率(SR)的研究很多。据我们所知,但是,很少有SR方法与压缩图像有关。由于复杂的压缩伪像,因此压缩图像的SR是一项具有挑战性的任务,而许多图像则缺乏实用性。解决此难题的直观方法是将其分解为两个连续但独立的子问题,即压缩伪影减少(CAR)和SR。但是,CARstage中可能会删除一些有用的细节,这与SR的目标相反,并使SR阶段更具挑战性。本文设计了一种端到端可训练的深卷积神经网络对压缩图像(CISRDCNN)进行SR,从而减少了压缩伪影,并共同提高了图像的分辨率。本文证明)提出的CISRDCNN在常用的测试图像和图像集上具有最新的SR性能。 CISRDCNN在真实的低质量Web图像上的结果也非常令人印象深刻,并且质量得到了明显提高。此外,我们探索了所提出的SR方法在低比特率图像编码中的应用,从而导致比JPEG更好的失真率性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号